Navigation
Search
|
Quantum Computers Will Break the Encryption that Protects the Internet
Friday October 19, 2018. 06:11 PM , from Slashdot
An anonymous reader shares a report: Factorising numbers into their constituent primes may sound esoteric, but the one-way nature of the problem -- and of some other, closely related mathematical tasks -- is the foundation on which much modern encryption rests. Such encryption has plenty of uses. It defends state secrets, and the corporate sort. It protects financial flows and medical records. And it makes the $2trn e-commerce industry possible. Nobody, however, is certain that the foundation of all this is sound. Though mathematicians have found no quick way to solve the prime-factors problem, neither have they proved that there isn't one. In theory, any of the world's millions of professional or amateur mathematicians could have a stroke of inspiration tomorrow and publish a formula that unravels internet cryptography -- and most internet commerce with it. In fact, something like this has already happened. In 1994 Peter Shor, a mathematician then working at Bell Laboratories, in America, came up with a quick and efficient way to find a number's prime factors. The only catch was that for large numbers his method -- dubbed Shor's algorithm -- needs a quantum computer to work. Quantum computers rely on the famous weirdness of quantum mechanics to perform certain sorts of calculation far faster than any conceivable classical machine. Their fundamental unit is the 'qubit', a quantum analogue of the ones and zeros that classical machines manipulate. By exploiting the quantum-mechanical phenomena of superposition and entanglement, quantum computers can perform some forms of mathematics -- though only some -- far faster than any conceivable classical machine, no matter how beefy.
Read more of this story at Slashdot.
rss.slashdot.org/~r/Slashdot/slashdot/~3/iT2AZdjvv58/quantum-computers-will-break-the-encryption-tha...
|
25 sources
Current Date
Apr, Tue 29 - 04:12 CEST
|